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Abstract

The Marangoni flows in a horizontal layer of a binary mixture with an undeformable free upper surface are studied

analytically and numerically. The system is heated and cooled by constant heat fluxes. The surface tension is assumed to

vary linearly with temperature and solute concentration. Both double diffusive convection and Soret induced con-

vection, in a zero gravity level, are considered. The governing parameters of the problem are the thermal Marangoni

number MaT, the solutal Marangoni number MaS, the Prandtl and the Lewis numbers Pr and Le, the aspect ratio A and
the parameter a defining the mechanism responsible for the occurrence of the solutal gradients (double diffusion or

Soret effect). An approximate analytical solution, based on the parallel flow approximation, is proposed. Bifurcation

diagrams are presented for the cases in which the solutal Marangoni effect acts in the same direction or competes with

the thermal Marangoni effect. The stability of the parallel flow solution is studied numerically and the threshold for

Hopf bifurcation determined. The validity of the analytical model is tested against the results obtained by solving

numerically the full governing equations.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Surface tension-driven convection in a layer of fluid

heated from below or above has been considerably

studied in the past since these flows are important in

several material processing technologies. Applications

include for example small-scale hydrodynamics [1] and

motion in crystal growth melts in microgravity condi-

tions [2]. An understanding of the physical phenomenon

associated with surface tension induced convection is

required in order to improve the quality of materials.

Thermocapillary flows in a pure fluid have been

investigated, both theoretically and numerically, by

several authors. In his pioneering work, Pearson [3] re-

ported the critical Marangoni number for the thermo-

capillary instability in a fluid layer heated from below.

The combined effect of surface tension and buoyancy

was investigated by Nield [4] on the basis of the linear

stability theory. The role of interfacial deformation of

the free surface has been considered by Davis and

Homsy [5], Scriven and Sternling [6] and Takashima [7],

among others. Three dimensional effects have been in-

vestigated by Dauby and Lebon [8] and Bergeon et al.

[9]. A recent review on the subject of thermocapillary

instability is consolidated by Tomita and Abe [10].

The study of Marangoni flows has also been per-

formed in the case of a binary mixture for which surface

tension depends on both temperature and solute con-

centration. For this situation, the linear stability analysis

of Pearson [3] was generalized by Mc Taggart [11]. The

linear and nonlinear doubly-diffusive Marangoni insta-

bility in a thin liquid film was considered by Ho and

Chang [12]. Nonlinear finite-amplitude instability and

mode competition between oscillatory and static rolls

have been discussed by these authors. The linear stability

characteristics of a fluid layer with simultaneous tem-

perature and concentration gradients in a reduced-

gravity field was investigated by Chen and Su [13].

Results show that the predicted stability boundary based
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on Marangoni effects alone is completely altered in the

presence of buoyancy effects induced by low gravity

levels. Marangoni convection in binary mixtures with

Soret effect has been considered by Joo [14]. The gravi-

tational effects were neglected and the interface was al-

lowed to deform. It was demonstrated that oscillatory

instability can exist when the thermocapillarity is desta-

bilizing and the solutocapillarity is stabilizing. Marang-

oni convection in binary mixtures with Soret effect was

considered by Bergeron et al. [15,16] for a fluid layer with

one undeformable free surface. Computed bifurcation

diagrams show a marked transition from a weakly con-

vective Soret regime to a strongly convective Marangoni

regime when the threshold for pure fluid thermal con-

vection is passed. Doubly diffusive Marangoni convec-

tion has also been investigated by Jue [17] and Arafune

and Hirata [18]. Numerical results for the flow fields as

well as temperature and concentration distributions were

carried out. The Marangoni effect was found to affect

considerably the flow pattern depending on whether the

surface tension induced circulation and buoyancy in-

duced circulation are in the same direction or not.

In the present paper, we consider Marangoni con-

vection in a binary fluid layer with the horizontal

boundaries heated and cooled by constant heat fluxes.

The paper is organized as follows. In the next sections,

the formulation of the problem and numerical method

are presented. An approximate analytical solution is

then proposed. This is followed by a presentation of

bifurcation diagrams for both double diffusive and Soret

induced convection. A linear stability analysis of the fi-

nite amplitude convection, predicted by the analytical

model, is then conducted. The last section contains some

concluding remarks.

2. Mathematical formulation

The physical model considered here is a horizontal

cavity of width L0 and height H 0 such that the aspect

ratio A is defined as: A ¼ L0=H 0 (see Fig. 1). Neumann

boundary conditions are applied for temperature on the

horizontal walls while the vertical sides of the bound-

aries are assumed adiabatic. All the boundaries of the

cavity, except the upper free surface, are supposed to be

rigid and impermeable. The cavity is filled with a binary

mixture having a uniform initial mass fraction N0, where
N is the mass fraction of the heavier species of the fluid

mixture.

The upper free surface is assumed to be flat and

subjected to a surface tension r which varies linearly

with temperature and mass concentration as:

rðT 0;NÞ ¼ r0b1� cTðT 0 � T 0
0Þ � cNðN � N0Þc ð1Þ

Nomenclature

A aspect ratio of the cavity, L0=H 0

a real number

b constant, Eq. (21)

C dimensionless concentration, ðN � N0Þ=DN
CN dimensionless concentration gradient in x-

direction

CT dimensionless temperature gradient in x-di-
rection

D mass diffusivity of species, m2 s�1

D0 thermal diffusion coefficient, m2 s�1 K�1

g gravitational acceleration, m s�2

H 0 height of enclosure, m

j0 solute flux per unit area, kgm�2 s�1

k thermal conductivity, Wm�1 K�1

L0 width of the enclosure, m

Le Lewis number, a=D
MaS solutal Marangoni number, Eq. (15)

MaT thermal Marangoni number, Eq. (15)

N dimensionless concentration of the denser

component, S0=q0
N0 initial mass fraction

DN characteristic dimensionless concentration

Pr Prandtl number, m=a
q0 constant heat flux per unit area, Wm�2

S0 concentration of the denser component,

kgm�3

t dimensionless time, t0a=H 02

T dimensionless temperature, ðT 0 � T 0
0Þ=DT 0

DT 0 characteristic temperature, q0H 0=k
u dimensionless velocity in x-direction, u0H 0=a
v dimensionless velocity in y-direction, v0H 0=a
x dimensionless coordinate axis, x0=H 0

y dimensionless coordinate axis, y0=H 0

Greek symbols

a thermal diffusivity, m2 s�1

cN solutal surface tension gradient

cT thermal surface tension gradient, K�1

l dynamic viscosity of fluid, kgm�1 s�1

m kinematic viscosity of fluid, m2 s�1

h dimensionless temperature field, Eq. (17)

q density of fluid, kgm�3

ðqCÞf heat capacity of fluid, W sm�3 K�1

r fluid surface tension coefficient

W dimensionless stream function, W0=a
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where the subscript 0 refers to conditions at a reference

state and cT and cN are the thermal and solutal expan-
sion coefficients, respectively. For most fluids, cT is

positive but cN may be positive or negative.
The phenomenological equations, relating the fluxes

of heat Q
!0
and matter J

!0
to the thermal and solute gra-

dients, present in a binary fluid mixture are given by (see

for instance, De Groot and Mazur [19]):

Q
!0

¼ �krT 0; J
!0

¼ �qDrN � qD0Nð1� NÞrT 0 ð2Þ

where q is the density of the mixture, k and D are the

thermal conductivity and the isothermal diffusion coef-

ficient. D0 is the thermal diffusion coefficient. In the flux-

gradient relation for heat the Dufour transport effect

is not considered since it is negligible in liquids.

In the absence of gravity, the balanced equations for

momentum, energy and mass fraction of the denser

components are given below in terms of the vorticity x0,

stream function W0 and velocity field V
!0
as:

ox0

ot0
þ LðW0;x0Þ ¼ mr2x0 ð3Þ

oT 0

ot0
þ V

!0
� rT 0 ¼ ar2T 0 ð4Þ

oN
ot0

þ V
!0

� rN ¼ Dr2N þ aD0N0ð1� N0Þr2T 0 ð5Þ

where a is a real number, the significance of which will be
discussed in the following text, x0 ¼ �r2W0, Lðf ; gÞ ¼
fygx � fxgy . As usual, we have: u0 ¼ oW0=oy0, v0 ¼
�oW0=ox0 such that the mass conservation is satisfied.
In the above equations, m is the kinematic viscosity of

the mixture and a the thermal diffusivity coefficient. For

reasonably dilute solutions, N0 � 1 such that ð1�
N0Þ 
 1.

Hydrodynamic boundaries conditions include the no-

slip requirement on the vertical walls and bottom of the

cavity.

x0 ¼ �L0=2 : W0 ¼ 0;
oW0

ox0
¼ 0 ð6aÞ

y0 ¼ �H 0=2 : W0 ¼ 0;
oW0

oy0
¼ 0 ð6bÞ

while the free upper surface hydrodynamic boundary

conditions are:

y0 ¼ H 0=2 : W0 ¼ 0 ð6cÞ

l
ou0

oy0
¼ or

oT 0

����
N

oT 0

ox0
þ or

oN

����
T 0

oN
ox0

ð6dÞ

In the present investigation, it is assumed that the solutal

forces prevailing in the binary mixture may be induced

by two transport mechanisms. The first one is referred in

literature as double diffusive convective problems. For

this situation a ¼ 0 and the species gradients are estab-

lished by the imposition of given solutal boundary

conditions (such as the constant mass fluxes j0 consid-
ered here). The second one, for which a ¼ 1, corre-

sponds to the case where the concentration gradients, in

a binary mixture initially homogeneous in composition,

are due to the so-called thermal diffusion (or Soret)

effects. The last term in the right hand side of Eq. (5) is

a consequence of the Soret effect.

The boundary conditions applied on the horizontal

boundaries of the system are uniform fluxes of heat and

mass, per unit area, q0 and ð1� aÞj0 ¼ 0 respectively.

Fig. 1. Schematic diagram of the physical model and coordinate system.
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The thermal boundary conditions considered here

are:

x0 ¼ �L0=2 :
oT 0

ox0
¼ 0 ð7aÞ

y0 ¼ �H 0=2 : �k oT
0

oy0
¼ q0 ð7bÞ

while those for the mass fraction are, for a ¼ 0:

x0 ¼ �L0=2 :
oN
ox0

¼ 0 ð8aÞ

y0 ¼ �H 0=2 : �qD
oN
oy0

¼ j0 ð8bÞ

and for a ¼ 1 : rN
�

� D0

D
N0rT 0

�
�~nn ¼ 0 ð9Þ

The above equation follows from Eq. (2b) and the fact

that for Soret convection, it is assumed that all solid

boundaries are impermeable (J
!0
:~nn ¼ 0). The unit vector

~nn is perpendicular to a given boundary.
The following dimensionless variables (primed

quantities are dimensional) are used:

ðx; yÞ ¼ ðx0; y0Þ=H 0; u; v ¼ ðu0; v0ÞH 0=a;

C ¼ ðN � N0Þ=DN T ¼ ðT 0 � T0Þ=DT 0;

DT 0 ¼ q0H 0=k t ¼ t0a=H 02; W ¼ W0=a

ð10Þ

where DN ¼ j0H 0=qD for double diffusion convection

and DN ¼ �N0DT 0D0=D for Soret driven convection.

In terms of the above definitions, the dimensionless

governing equations expressing conservation of mo-

mentum, energy and species reduce to the following

equations:

ox
ot

þ LðW;xÞ ¼ Prr2x ð11Þ

oT
ot

þ LðW; T Þ ¼ r2T ð12Þ

oC
ot

þ LðW;CÞ ¼ 1

Le
ðr2C � ar2T Þ ð13Þ

The dimensionless boundary conditions are given by:

x ¼ �A=2 : oT
ox

¼ oC
ox

¼ 0; W ¼ 0;
oW
ox

¼ 0 ð14aÞ

y ¼ �1=2 : oT
oy

¼ oC
oy

¼ �1; W ¼ 0;
oW
oy

¼ 0 ð14bÞ

y ¼ 1=2 :

oT
oy

¼ oC
oy

¼ �1; W ¼ 0

o2W
oy2

¼ � MaT
oT
ox

þMaS
Le

oC
ox

� �
8>><>>: ð14cÞ

The mass fraction boundary conditions are now ob-

served to be independent of parameter a.

The above equations indicate that the present prob-

lem is governed by the following dimensionless para-

meters:

Le ¼ a
D
; Pr ¼ m

a
; A ¼ L0

H 0

MaT ¼ � or
oT 0

����
N

DT 0H 0

al
; MaS ¼ � or

oN

����
T 0

DNH 0

Dl

ð15Þ

It is noted from Eq. (14c) that the surface tension de-

pends upon the thermal Marangoni number MaT and
the solutal Marangoni number MaS.
The heat and mass transfer rates, defined in terms of

the Nusselt and Sherwood numbers, are given by the

following expressions:

Nu ¼ 1

DT
; Sh ¼ 1

DC
ð16Þ

where DT ¼ T ðy ¼ �1=2Þ � T ðy ¼ 1=2Þ and DC ¼ Cðy ¼
�1=2Þ �Cðy ¼ 1=2Þ are the temperature and concen-

tration differences, evaluated between the horizontal

boundaries. All the numerical values for Nu and S, re-
ported in this study, are evaluated at the position x for
which the stream functions is the maximum.

3. Numerical solution

The solution of the governing equations and

boundary conditions, Eqs. (11)–(14) is obtained using a

control volume approach and the SIMPLER algorithm

(Patankar [20]). A finite difference procedure with vari-

able grid size is used for better consideration of

boundary conditions especially near the surface tension.

The power-law scheme is used to evaluate the flow, heat

and mass fluxes across each of the control volume

boundaries. A second order backwards finite difference

scheme is employed to discretize the temporal terms

appearing in the governing equations. The discretized

momentum, energy and concentration equations are

underrelaxed to accelerate the convergence. The relax-

ation parameter was chosen equal to 0.5. A Thomas

iterative procedure is employed to solve the resulting

discretized equations. At each new time step, the up-

dating of the physical new variables is done until the

convergence criterion
Pm

i¼1ðbki � bk�1i Þ=
Pm

i¼1 b
k
i 6 10

�9 is

satisfied, where b stands for W, T and C.
Numerical tests have been performed to determine

the minimum aspect ratio above which the flow can be

assumed to be parallel. In the range of the parameters

considered in this investigation it was found that the

numerical results can be considered independent of

the aspect ratio when AP 6. For this reason most of the

numerical results reported here were obtained for A ¼ 8

with typically 60� 180 mesh points.
The numerical results presented in this study are

limited to water-based solutions, i.e. Pr ¼ 7. However, it

is well known that the solution is rather insensible to the
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Prandtl number provided that this latter is of order one

or greater. This finding is also confirmed by the present

analytical solution which, in its range of validity, is in-

dependent of Pr.
Typical numerical results are presented in Fig. 2 for

A ¼ 8, MaT ¼ 2:5, MaS ¼ �0:5, Le ¼ 2 and a ¼ 1 (Soret

driven convection). In Fig. 2a, streamlines, isotherms

and isoconcentrates are presented from top to bottom.

The results clearly illustrate the fact that for a shallow

cavity ðA � 1Þ the flow in the core region of the enclo-
sure is essentially unicellular and parallel because of the

Neumann boundary conditions considered here, while

the temperature and concentration in the core are lin-

early stratified in the horizontal directions. The analyt-

ical solution, developed in the following section, will rely

on these observations. The numerically determined

profiles of streamfunction, velocity, temperature and

concentration at the center of the convective cell are

compared in Fig. 2b with their analytical counterparts

derived below. The agreement between the two solutions

is seen to be excellent.

4. Analytical solution

In this section, an analytical solution is developed for

steady-state flows using the parallel flow approximation,

which leads to the following simplifications:

Wðx; yÞ ¼ WðyÞ; T ðx; yÞ ¼ CTxþ hðyÞ;
Cðx; yÞ ¼ CSxþ ZðyÞ ð17Þ

where CT and CS are unknown constant gradients re-
spectively in x direction.
Using these approximations together with boundary

conditions (14b) and (14c), Eqs. (11)–(13) are reduced to

a set of ordinary differential equations which can be

solved to yield a closed form analytical solution. It is

found that:

WðyÞ ¼ �W0ð8y3 þ 4y2 � 2y � 1Þ ð18Þ

hðyÞ ¼ �CTW0yf ðyÞ � y ð19Þ

ZðyÞ ¼ �ðLeCS þ aCTÞW0yf ðyÞ � y ð20Þ

where f ðyÞ ¼ 2y3 þ 4y2=3� y � 1, W0 ¼ 3ðMaTCTþ
MaSCS=LeÞ=2 and Mai ¼ Mai=Masup with Masup ¼ 48.

The values of CT and CS are obtained using the fact
that the heat and solute transports across a vertical

section at any x should be zero, yielding:

CT ¼ 4

3

b2W0

2b2 þ W2
0

;

CS ¼
4

3
b2W0

ð2b2 þ W2
0ÞLeþ að2b2 � LeW2

0Þ
ð2b2 þ W2

0Þð2b2 þ Le2W2
0Þ

ð21Þ

Fig. 2. (a) Streamlines, isotherms and isoconcentrates. (b) Streamfunction, velocity, temperature and concentration for A ¼ 8,

MaT ¼ 2:5, MaS ¼ �0:5, Le ¼ 2 and a ¼ 1; WMax ¼ 1:79, Nu ¼ 1:73, Sh ¼ 5:32.
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where b2 ¼ 105=128. It is noted that the values of CT and
CS can be obtained explecitely only for the thermal and
solutal boundary conditions considered here.

Substituting these results into Eq. (16), we can de-

duce the expressions for Nusselt, Nu, and Sherwood,
Sh, numbers as follows:

Nu ¼ �
9 2b2 þ W2

0

	 

W2
0ð8b2 � 9Þ � 18b2

ð22Þ

Sh ¼ �
9 2b2 þ Le2W2

0

	 

Le2W2

0ð8b2 � 9Þ � 18b2 þ a
16b4W2

0
ð1þLeÞ

2b2þW2
0

ð23Þ

Substituting CT and CS into W0 it is found that:

W0½Le4W4
0 � 2b2d1Le2W2

0 � b4d2� ¼ 0 ð24Þ

where

d1 ¼ Le2ðMaT � 1Þ þMaSð1� aÞ � 1;
d2 ¼ 4Le2½MaSð1þ a=LeÞ þMaT � 1� ð25Þ

The solution for Eq. (24) is expressed as follows:

W0 ¼ � b
Le

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d2

qr
ð26Þ

The supercritical Marangoni number ðMaTÞsupc , for the

onset of motion from the rest state, is obtained, when

the conditions d1 < 0 and d2 ¼ 0 are satisfied, as:

ðMaTÞsupc ¼ 1�MaSð1þ a=LeÞ ð27Þ

In the present analysis, it can be demonstrated that

subcritical flows occur when d1 > 0 and d2 < 0 and more

precisely when:

MaS <
1�MaT
1þ a=Le

and Le >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MaSð1� aÞ � 1

1�MaT

s
ð28Þ

We can deduce, from the above expressions, the fol-

lowing specific conditions for the existence of the sub-

critical flows.

MaS < 0 and Le >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aÞMaS � 1
ð1þ a=LeÞMaS

s
ð29Þ

The subcritical Marangoni number ðMaTÞsubc , for the

onset of motion at finite amplitude convection is ob-

tained from the conditions d1 > 0 and d21 þ d2 ¼ 0 as:

ðMaTÞsubc

¼ 1þMaSða� 1Þ � 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MaS½�LeðLeþ aÞ þ 1� a�

p
Le2

ð30Þ

where

MaS < 0 and MaS½�LeðLeþ aÞ þ 1� a� > 0 ð31Þ

From the present solution, which is valid asymptotically

for both A � 1 and Pr � 1, it is clear that the present

problem is now governed only by three parameters,

namely the thermal Marangoni number MaT, the solutal
Marangoni number MaS and the Lewis number Le. For
positive values of MaT and MaS, both the temperature
and concentration effects are destabilizing. Naturally, in

general, the Marangoni numbers can have opposite

signs.

Typical bifurcation diagrams for the steady-state

solution are presented in Figs. 3 and 4 for various values

of the solutal Marangoni numbers (MaS ¼ �200, 0 and
200; i.e. MaS ¼ �4:17, 0 and 4.17), for Le ¼ 2 and a ¼ 0

(double diffusion) and a ¼ 1 (Soret effect), respectively.

The thermal and solutal Marangoni numbers are nor-

malized with respect to the critical parameter Masup ¼
48. The curves depicted in those graphs are the result of

the present theory, the solid lines corresponding to sta-

ble branches and the dotted ones to unstable branches.

The numerical solution of the full governing equations,

obtained for A ¼ 8, depicted by dots, are seen to be in

good agreement with the analytical solution.

Pure thermal Marangoni convection in a horizontally

infinite layer of a fluid can be deduced from the present

analysis. Thus, substituting MaS ¼ 0 in Eqs. (18)–(27),

leads to the fundamental equations ruling this case. For

this situation, it is found that convection is possible only

for MaT P 1. This result is in agreement with the linear

stability analysis of Nield [4] from which it was dem-

onstrated that, for the thermal and solutal boundary

conditions considered here, the onset of convection oc-

curs at zero wave number. Thus, it is not surprising that

the present parallel flow approximation is capable to

predict the onset of motion.

The results obtained for double diffusive convec-

tion, Fig. 3, and Soret induced convection, Fig. 4, will

be discussed simultaneously since they are qualita-

tively similar. Figs. 3a and 4a illustrate the effect of

MaT on WMax for typical values of MaS. For MaS ¼ 0,

as discussed above, the onset of convection occurs

at ðMaTÞsupc ¼ 1, through a pitchfork bifurcation. The

curves corresponding to MaS ¼ 4:17 (MaS ¼ 200) illus-

trate the situation where both thermal and solutal con-

tributions are destabilizing (MaT > 0 and MaS > 0). The

results indicate that the onset of convection occurs at a

ðMaTÞsupc lower than that for the pure thermal one

(ðMaTÞsupc ¼ 1). Two distinct convective regimes are

noticed. The first one, corresponding to relatively weak

flows, occurs for MaT between the thermal-solutal and
the thermal thresholds. The second one, observed for

MaT higher than the thermal threshold, is relatively

stronger and similar to the one observed for pure ther-

mal situation. On the other hand the curves corre-

sponding to MaS ¼ �4:17 illustrate the situation where
thermal contributions are destabilizing while the solutal

ones are stabilizing. For this situation, the onset of
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convection occurs with a finite amplitude convection at

a subcritical thermal Marangoni number predicted by

Eq. (30). Thus, for the parameters considered here,

ðMaTÞsupc ¼ 3:56 when a ¼ 0 and ðMaTÞsupc ¼ 3:25 when

a ¼ 1. These points correspond to saddle-node bifurca-

tions, where two branches emerge. An unstable branch,

represented by a dashed line, connects the subcritical

Marangoni number to the supercritical Marangoni

Fig. 3. Bifurcation diagrams for Le ¼ 2, a ¼ 0, for MaS ¼ 4:17, 0 and )4.17 for (a) WMax versus MaT; (b) Nu versus MaT; (c) Sh versus
MaT.

Fig. 4. Bifurcation diagrams for Le ¼ 2, a ¼ 1, for MaS ¼ 4:17, 0 and )4.17 for (a) WMax versus MaT; (b) Nu versus MaT; (c) Sh versus
MaT.
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number predicted by Eq. (27). The other branch, rep-

resented by a solid line, is stable. Similar results have

been reported by Bergeron et al. [16].

Figs. 3 and 4 also exemplify the effects of MaT and
MaS on the heat and mass transfer. Thus, it is observed
from Fig. 4b and c that, when compared with the pure

thermal situation (MaS ¼ 0), the Nusselt number Nu is
higher when the solutal and thermal influences are both

destabilizing than when a stabilizing solutal Marangoni,

competing with a destabilizing thermal Marangoni, is

considered. It is noticed that, for very large values of

MaT, all the curves tend asymptotically towards a con-
stant value given by:

Nu ¼ Sh ¼ 1

1� 8b2=9 
 3:69 ð32Þ

as it can be deduced from Eqs. (22) and (23). This be-

havior is a consequence of the particular boundary

conditions considered here (Neumann conditions).

Results obtained for the mass transfer are depicted in

Figs. 3c and 4c. The Sherwood number in the case of

Soret induced convection (a ¼ 1) is observed to be quite

different from that obtained in the case of double dif-

fusive convection (a ¼ 0). Thus, it is seen from Fig. 4c

that Sh first passes through a maximum value before

decreasing asymptotically toward the constant value

3.69 when MaS is made sufficient large. This is not the
case when a ¼ 0 for which Fig. 3c indicates that Sh in-
creases monotonously towards the constant value 3.69.

It is noted that the significance of Sh in both cases is
different. The Sherwood number, for double diffusive

convection, represents the mass transfer across the

horizontal boundaries of the layer resulting from the

combined action of convection and conduction. On

the other hand, the Sherwood number, for Soret in-

duced convection, has not the same interpretation.

Since the boundaries of the layer are impermeable, Sh
is rather related to the concentration distribution in-

duced by the Soret effect and by convection.

Another view of the effects of opposing and aiding

thermal and solutal Marangoni numbers is presented in

Fig. 5 for Le ¼ 2. Here again, the results obtained for the

case a ¼ 0 (Fig. 5a) and a ¼ 1 (Fig. 5b) are qualitatively

similar and will be discussed simultaneously. When

MaT ¼ 0 (pure solutal situation), convection occurs at

MaS ¼ 1=ð1þ a=LeÞ, as predicted by Eq. (27), and

convection is possible only for MaS > 0, i.e. when the

solutal influence is destabilizing. For MaT ¼ �4:17
(MaT ¼ �200), i.e. when the thermal influence is stabi-
lizing, here again convection is possible only when

MaS > 0, i.e. when the solutal influence is destabilizing.

For this situation, the onset of convection also occurs

through a pitchfork bifurcation. On the other hand,

whenMaT ¼ �4:17 (MaT ¼ �200), i.e. when the thermal
influence is destabilizing, convection is possible only for

MaS ¼ �5:52 (a ¼ 0) and MaS ¼ �7:78 (a ¼ 1). At this

point, where the solutal influence is stabilizing (MaS <
0), convection occurs with a finite amplitude convec-

tion at a subcritical Marangoni number predicted by

Eq. (30).

The effect of the Lewis number on the present

problem is illustrated in Fig. 6 for MaS ¼ �2:08, i.e.
when the solutal influence is stabilizing. Fig. 6a shows

the bifurcation curves, obtained for double diffusive

convection (a ¼ 0), in terms of the flow intensity WMax as

a function of MaT (MaT > 0, i.e. for a destabilizing

thermal influence). For these conditions, according to

Eq. (29), the Lewis number expressing the transition

from a supercritical to a subcritical bifurcation is

Fig. 5. Bifurcation diagrams in terms of WMax versus MaS for
Le ¼ 2 and for (a) double diffusive convection and (b) Soret

induced convection.
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Le ¼ 1:22. As it can be observed from the graphs, the

bifurcation is supercritical when Le < 1:22 (i.e. Le ¼ 1)

and subcritical when Le < 1:22 (Le ¼ 2, 10 and 100).

The limiting curve corresponding to Le ! 1 (Le ¼ 100)

is also presented on the graph for comparison. For this

situation, the solute concentration is almost uniform on

the whole of the layer, except in very thin layers near the

horizontal boundaries. For this limit, it is observed that

the critical Marangoni number for the onset of convec-

tion approaches that corresponding to a pure thermal

situation, i.e. ðMaTÞsubc ! 1 and WMax ! 0 as Le ! 1.
In this case of high value of the Lewis number, we can

deduce from Eq. (26) the following simplification forW0:

W0 ¼ �b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðMaT � 1Þ

q
ð33Þ

Fig. 6b shows the corresponding curves obtained for

a ¼ 1, i.e. for Soret induced convection. The results are

observed to be quite different. Thus, according to Eq.

(29), it is predicted that the Lewis number expressing

the transition from supercritical to subcritical bifurca-

tion is Le ¼ 0:35, such that all the curves presented in the
graph indicate the occurrence of subcritical convection.

Also, it is noticed that the onset of supercritical con-

vection is now function of the Lewis number, as pre-

dicted by Eq. (27). Here again, the limiting case Le ! 1
corresponds to the pure fluid situation.

Fig. 7 presents a bifurcation diagram in terms of

WMax versus Le for MaT ¼ 4:17 and MaS ¼ �2:08. In the
case of double diffusive convection, it is observed that

convection is possible for any value of the Lewis number

since, with the parameters considered here, Eq. (29) is

satisfied independently of the value of Le. However, for
Soret induced convection, the onset of supercritical

convection occurs at Le ¼ 1:92. Furthermore, accord-
ing to Eq. (29), the Lewis number for the onset of sub-

critical convection is Le ¼ 0:35. As a result, Soret

induced convection, for the parameters considered here,

Fig. 6. Bifurcation diagrams in terms of WMax versus MaT for MaS ¼ �2:08 and different Lewis numbers for (a) double diffusive
convection and (b) Soret induced convection.
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is possible only for LeP 0:35. For very large values
of Le, it is noted that, in agreement with the results given
by Eq. (29), the solution becomes independent of the

parameter a, i.e. of the mechanism responsible for the

establishment of the density gradients. Thus, in both

cases, WMax ! 2:70. Also, it is observed that for Le ! 0,

WMax ! 0:90.

5. Linear stability analysis

In this section, the stability of the convective flows,

predicted by parallel flow approximations, is investi-

gated using the linear stability analysis. At the very be-

ginning of instability of the basic flow state, the global

flow can be assumed to be a superposition of the basic

flow and of an infinitesimal perturbation that can be

developed into normal modes as follows:

eWWðt; x; yÞ ¼ eWWðyÞeptþkðx cos/þz sin/Þ

~hhTðt; x; yÞ ¼ ~hhTðyÞeptþkðx cos/þz sin/Þ

~hhSðt; x; yÞ ¼ ~hhSðyÞeptþkðx cos/þz sin/Þ

ð34Þ

where p ¼ ðr þ ixÞ and r, and x are respectively the

perturbation temporal growth rate and frequency. The

wave number k is real since the system is supposed to be

infinite in the horizontal direction and the perturbations

are bounded. The parameter / is the direction of

propagation of the traveling waves. Inserting these

perturbation fields into the flow fields described by

Eqs. (11)–(13) and linearizing about the basic flow state

yields the following set of equations:

PrðD2 � k2Þ2 eWW � ikw0ðyÞðD2 � k2Þ eWW þ ikw000ðyÞ eWW
¼ pðD2 � k2Þ eWW ð35Þ

ðD2 � k2Þ~hhT � ikw0ðyÞ~hhT � CTD eWW þ ikh0ðyÞ eWW ¼ p~hhT

ð36Þ

1

Le
ðD2 � k2Þð~hhS � a~hhTÞ � ikw0ðyÞ~hhS � CSD eWW
þ ikZ 0ðyÞ eWW ¼ p~hhS ð37Þ

The corresponding boundary conditions are:

y ¼ �1=2 : d~hhT
dy

¼ d~hhS
dy

¼ 0; eWW ¼ 0;
d ~WW
dy

¼ 0

ð38aÞ

y ¼ 1=2 :

d~hhT
dy

¼ d~hhS
dy

¼ 0; ~WW ¼ 0

d2 eWW
dy2

¼ �ik MaT ~hhT þ
MaS
Le

~hhS

� �
8>>><>>>: ð38bÞ

where D ¼ d=dy and w0ðyÞ, w000ðyÞ, h0ðyÞ, Z 0ðyÞ are de-
rivatives of stream function, temperature and concen-

tration of the basic flow.

As the system of Eqs. (35)–(37) contains the basic

flow velocity uðyÞ ¼ W0ðyÞ, we may expect the occurrence
of hydrodynamic modes due to destabilization of the

velocity profile. For the two-dimensional parallel flow

uðyÞ considered here, the minimum critical unstable MaT

Fig. 7. Bifurcation diagrams in terms of WMax versus Le for MaT ¼ 4:17 and MaS ¼ �2:08 for double diffusive convection and Soret
induced convection.
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number occurs for a two-dimensional disturbance

propagating along the same direction ð/ ¼ 0Þ (Squire�s
theorem [21]).

The perturbed state Eqs. (35)–(37) together with the

homogeneous boundary conditions (38) may be written

in a compact matrix form:

LðkÞY
!
¼ pMðkÞY

!
ð39Þ

where Y
!
¼ ½ eWWðyÞ; ~hhTðyÞ; ~hhSðyÞ� is a three-component

vector of the perturbation (stream function, temperature

and concentration); LðkÞ and MðkÞ are two linear dif-
ferential operators that depend on the control parame-

ters of the problem.

The system of Eq. (39) is solved numerically using

a finite difference scheme. The system is discretized in

the domain between y ¼ �1=2 and 1=2, and written in
the form LijðkÞY

!
j ¼ pMijðkÞY

!
j. Using a standard sub-

routine for the eigenvalue problem such as EIGENC

of IMSL, the eigenvalues are determined as a function

of the control parameters, MaT, MaS, Le, a, and the
wave number k. For given values of MaT, MaS, Le and a,
the value of MaT is evaluated for which the fastest

growth rate (maximal value of r) cancels. This gives a
functional MaT ¼ MaTðk;-Þ. The minimum in the mar-

ginal stability curve MaTðkÞ determines the critical state
parameters (k, -, MaTC). The critical parameter value
is seen to converge well for a discritization number

N > 60.

Fig. 8 illustrates typical results concerning the sta-

bility of the parallel flow approximation as predicted by

the present numerical procedure. Results are presented,

for Le ¼ 2 and 10, in terms of the thermal Marangoni

number versus the solutal Marangoni number for both

the cases a ¼ 0 and a ¼ 1. The onsets of convection

from the rest state, are also indicated in the graphs

for completeness. Fig. 8a shows that, in the case of

double diffusive convection, the influence of the Lewis

number on the occurrence of Hopf�s bifurcations, de-
pends strongly upon the value of MaS. Thus, for
MaS > 0, the parallel flow becomes unstable earlier as

the value of the Lewis number is made smaller. The

reverse effect is observed for MaS < 0. In the case of

Soret induced convection it is noticed that the effect of

Le is considerable. Thus, for Le ¼ 2, Fig. 8b indicates

that, according to the linear stability theory, the parallel

flow solution is almost unconditionally stable, excepted

in a thin region in the vicinity of MaS P 0. However it

is noted that this region is extended to negative values

of MaS (MaS 
 �3:87) and large positive values of

MaS as the value of the Lewis number is increased to
Le ¼ 10.

The effects of the Lewis number on the critical ther-

mal Marangoni numbers for Hopf bifurcations are il-

lustrated in Fig. 9 for both a ¼ 0 and a ¼ 1. Fig. 9a

shows the results obtained for MaS ¼ 2:08. As discussed

earlier, for MaS > 0, the onset of convection from the

rest state occurs through a supercritical Marangoni

number, Eq. (27). For double diffusive convection,

ðMaTÞsupc ¼ �1:08 independently of the Lewis number
while for Soret induced convection, it is seen that

ðMaTÞsupc depends strongly upon Le. The effect of Le on

ðMaTÞHopfc is also observed to be important. According

to the linear stability analysis, the parallel flow is, for the

value of MaS considered here, unconditionally stable for
Le6 0:15 for a ¼ 0. For a ¼ 1, the results indicate that

the critical Marangoni number for Hopf bifurcation

increases considerably as the value of Le is decreased.
On the other hand, for LeP 40, it is observed that the

results become independent of a. Fig. 9b displays the
results obtained for MaS < 0 for which the onset of

convection from the rest state occurs for relatively low

Lewis numbers, through a supercritical Marangoni

number. Also included in the graphs the overstable

Marangoni number ðMaTÞoverc obtained by considering

the linear stability of the rest state with present numer-

ical procedure (the details are not discussed here). As the

value of Le is increased, the onset of motion is charac-
terized by a subcritical Marangoni number. The range of

Lewis numbers for which these two types of convection

Fig. 8. Bifurcation diagram in terms of MaT versus MaS for (a)
double diffusive convection and (b) Soret induced convection.
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are observed depends considerably of the value of a. The
numerically determined critical Marangoni numbers for

Hopf bifurcations indicate that for a ¼ 0, a value of

ðMaTÞHopfc always exists, independently of the value of

Le. However, for a ¼ 1, the existance ðMaTÞHopfc is pos-

sible only for Le > 7:01. Here again, for Le ! 1, the
results are independent of the value of Le.

6. Conclusion

Marangoni convection in a horizontal layer of a bi-

nary fluid has been investigated for both double diffusive

and Soret induced convection. The partial differen-

tial equations governing the problem are solved using

a control volume approach. An analytical solution

is obtained assuming that the flow field in the core

of the cavity is parallel to the horizontal boundaries.

The main conclusions of the present analysis are as

follows:

1. The onsets of supercritical and subcritical convection

have been determined analytically in terms of the

governing parameters of the problem. Domains of ex-

istence of the different regimes were found to depend

on the thermal and solutal Marangoni numbers and

on the Lewis number.

2. The parallel flow approximation was found to be

in good agreement with the numerical results, inde-

pendently of the strength of the convective motion,

in the range of the parameters considered in this

study.

3. Far from criticality, a stability analysis of the parallel

flow solution has been carried out and the thresholds

for Hopf bifurcations obtained numerically.
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